Effects of the poly(ethylene glycol) hydrogel crosslinking mechanism on protein release.

نویسندگان

  • Soah Lee
  • Xinming Tong
  • Fan Yang
چکیده

Poly(ethylene glycol) (PEG) hydrogels are widely used to deliver therapeutic biomolecules, due to high hydrophilicity, tunable physicochemical properties, and anti-fouling properties. Although different hydrogel crosslinking mechanisms are known to result in distinct network structures, it is still unknown how these various mechanisms influence biomolecule release. Here we compared the effects of chain-growth and step-growth polymerization for hydrogel crosslinking on the efficiency of protein release and diffusivity. For chain-growth-polymerized PEG hydrogels, while decreasing PEG concentration increased both the protein release efficiency and diffusivity, it was unexpected to find out that increasing PEG molecular weight did not significantly change either parameter. In contrast, for step-growth-polymerized PEG hydrogels, both decreasing PEG concentration and increasing PEG molecular weight resulted in an increase in the protein release efficiency and diffusivity. For step-growth-polymerized hydrogels, the protein release efficiency and diffusivity were further decreased by increasing crosslink functionality (4-arm to 8-arm) of the chosen monomer. Altogether, our results demonstrate that the crosslinking mechanism has a differential effect on controlling protein release, and this study provides valuable information for the rational design of hydrogels for sophisticated drug delivery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effects of varying poly(ethylene glycol) hydrogel crosslinking density and the crosslinking mechanism on protein accumulation in three-dimensional hydrogels.

Matrix stiffness has been shown to play an important role in modulating various cell fate processes such as differentiation and cell cycle. Given that the stiffness can be easily tuned by varying the crosslinking density, poly(ethylene glycol) (PEG) hydrogels have been widely used as an artificial cell niche. However, little is known about how changes in the hydrogel crosslinking density may af...

متن کامل

Poly(glutamic acid) poly(ethylene glycol) hydrogels prepared by photoinduced polymerization: Synthesis, characterization, and preliminary release studies of protein drugs.

A class of new biodegradable hydrogels based on poly(ethylene glycol) methacrylate-graft-poly(glutamic acid) and poly(ethylene glycol) dimethacrylate was synthesized by photoinduced polymerization. Because all the polymeric constituents were highly hydrophilic, crosslinking could be performed in aqueous solutions. This type of crosslinked hydrogel was prepared by modifying a select number of ac...

متن کامل

A pH- and ionic strength-responsive polypeptide hydrogel: synthesis, characterization, and preliminary protein release studies.

A novel polypeptide hydrogel has been synthesized by crosslinking poly(L-glutamic acid) (PLG) with poly(ethylene glycol) (PEG). The PLG-PEG hydrogel was shown to be highly hydrophilic, and the extent of swelling varied with pH, increasing at higher ionization of the PLG. Aside from electrostatic effects, such as ion-ion repulsion and internal ion osmotic pressure, circular dichroism studies sho...

متن کامل

Adapting biodegradable oligo(poly(ethylene glycol) fumarate) hydrogels for pigment epithelial cell encapsulation and lens regeneration.

This study investigated the encapsulation of newt iris pigment epithelial cells (PECs), which have the ability to regenerate a lens by trans-differentiation in vivo, within a biodegradable hydrogel of oligo(poly(ethylene glycol) fumarate) crosslinked with poly(ethylene glycol)-diacrylate. Hydrogel beads of initial diameter of 1 mm were fabricated by a molding technique. The swelling ratio and d...

متن کامل

In vitro drug release behavior from a novel thermosensitive composite hydrogel based on Pluronic f127 and poly(ethylene glycol)-poly(ε-caprolactone)-poly(ethylene glycol) copolymer

BACKGROUND Most conventional methods for delivering chemotherapeutic agents fail to achieve therapeutic concentrations of drugs, despite reaching toxic systemic levels. Novel controlled drug delivery systems are designed to deliver drugs at predetermined rates for predefined periods at the target organ and overcome the shortcomings of conventional drug formulations therefore could diminish the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials science

دوره 4 3  شماره 

صفحات  -

تاریخ انتشار 2016